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Abstract 1 

Secondary organic aerosols (SOAs) are important components of fine particulates in 2 

the atmosphere. However, the sources of SOA precursor and atmospheric processes 3 

affecting SOAs are poorly understood. This limits our abilities to improve air quality 4 

and model aerosol-mediated climate forcing. Here, we use novel compound-specific 5 

dual-carbon isotope fingerprints (Δ14C and δ13C) for dominant SOA tracer molecules 6 

(oxalic acid and related polar compounds) to investigate the fates of SOAs in the 7 

atmosphere at five emission hotspots in China. Coal combustion and vehicle exhausts 8 

accounted for ~55% of the sources of carbon in oxalic acid in Beijing and Shanghai, 9 

but biomass-burning and biogenic emissions accounted for ~70% of the sources of 10 

carbon in oxalic acid in Chengdu, Guangzhou, and Wuhan. The dual-carbon isotope 11 

signatures of SOA molecules and bulk organic carbon pools (e.g., water-soluble organic 12 

carbon) were compared to investigate the fates of SOAs in the atmosphere. 13 

Photochemical aging of organic aerosols was dominant in summer, but fresh SOA 14 

formation from precursor volatile organic compounds was dominant in winter. The 15 

results indicated that SOA carbon sources and chemical processes producing SOAs 16 

vary spatially and seasonally and these variations need including in Chinese climate 17 

projection models and air quality management practices. 18 
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1. Introduction 19 

Great efforts have been made to decrease fine particle (PM2.5) pollution in China, 20 

which led to a great improvement in air quality during the last decade. However, PM2.5 21 

concentrations in Chinese urban areas are still much higher than the World Health 22 

Organization guideline (Xing et al., 2020). Further improvements in air quality will be 23 

difficult to achieve because primary particulate emissions have already been effectively 24 

controlled through stringent regulatory polices established since 2005 (Zhao et al., 2018) 25 

and emissions of volatile organic compounds have remained stable (Wang et al., 2021). 26 

Field observations have indicated that most organic aerosols in Chinese urban areas are 27 

secondary organic aerosols (SOAs) formed through oxidation of biogenic and 28 

anthropogenic precursor volatile organic compounds in the atmosphere (Huang et al., 29 

2014). Our poor understanding of SOAs leads to some of the most important 30 

uncertainties when assessing global/regional climate forcing, either directly through 31 

solar radiation scattering and absorption or indirectly through aerosol–cloud 32 

interactions (Carlton et al., 2009; Hallquist et al., 2009). The sources of SOAs and 33 

chemical processes affecting SOAs in polluted areas of China need to be better 34 

understood to allow air quality control strategies to be optimized and accurate 35 

simulations of climate forcing to be developed. 36 

The large variety of SOA precursors and the complexity of physical/chemical 37 

processes in real atmosphere renders great challenges in understanding SOA formation. 38 

Radiocarbon (Δ14C) measurements of organic aerosol components allow high-precision 39 

fingerprinting to be achieved and the relative contributions of fossil fuels and 40 

biogenic/biomass sources to be determined (Gustafsson et al., 2009; Zhang et al., 2021). 41 

The Δ14C values for bulk organic aerosol materials such as black carbon (BC), organic 42 

carbon (OC), and water-soluble organic carbon (WSOC) have been determined 43 

(Andersson et al., 2015; Szidat et al., 2004; Szidat et al., 2006; Kirillova et al., 2013; 44 

Liu et al., 2014), but it is still difficult to directly measure the Δ14C values of SOAs in 45 
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atmospheric aerosols, which are chemically complex. Molecular-level Δ14C analysis of 46 

SOA markers can overcome this problem and remove uncertainty caused by using 47 

bottom-up organic precursor emission inventories (Chang et al., 2022).  48 

Oxalic acid is a useful SOA marker because it is a key end-product of various 49 

transformation pathways in the atmosphere and is typically the most abundant SOA 50 

component (Boreddy and Kawamura, 2018; Kawamura and Bikkina, 2016; 51 

Myriokefalitakis et al., 2011). Stable carbon isotope measurements (δ13C) of oxalic acid 52 

have been widely used to differentiate between various atmospheric processes affecting 53 

organic aerosols (Aggarwal and Kawamura, 2008; Wang et al., 2020; Zhang et al., 2016; 54 

Shen et al., 2022; Qi et al., 2022). Estimated kinetic isotope effects indicate that 55 

secondary formation and photochemical aging will affect δ13C in opposite ways 56 

(Kirillova et al., 2013). Combining δ13C and Δ14C measurements of oxalic acid could 57 

therefore allow the carbon sources of SOAs to be identified and processes affecting 58 

SOAs in the ambient atmosphere to be investigated. 59 

In this study, we determined the dual-carbon isotope fingerprints (Δ14C and δ13C) 60 

of water-soluble SOA components (oxalic acid and related polar organic acids) and their 61 

parent water-soluble aerosols (i.e., WSOC) in five highly industrialized and populated 62 

megacities in China. The cities were Beijing, Chengdu, Guangzhou, Shanghai, and 63 

Wuhan, which were used to represent the five main regional carbon emission hotspots 64 

in China (the North China Plain, the Sichuan Basin, the Pearl River Delta, the Yangtze 65 

River Delta, and the middle reaches of the Yangtze River, respectively) (Fig. S1). We 66 

determined spatial and seasonal variations in the sources of carbon in oxalic acid in the 67 

study areas. We then compared the δ13C and Δ14C data for oxalic acid and the bulk 68 

organic aerosol pool to investigate the atmospheric processes affecting SOAs in the 69 

different cities and seasons. The molecular-level isotope fingerprints allowed 70 

observational constraints on the sources of carbon in SOAs and atmospheric processes 71 

affecting SOAs to be determined. The results improve our understanding of the fates of 72 

SOAs in the atmosphere. 73 
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2 Methods 74 

2.1 Sampling campaign  75 

Field sampling was performed in five megacities, Beijing, Chengdu, Guangzhou, 76 

Shanghai, and Wuhan. The locations of the cities are shown in Fig. S1. Sampling was 77 

performed at an urban site and a suburban site in each city so that city-level data were 78 

acquired. The sampling campaign was described previously (Zhao et al., 2021) and 79 

sampling information is shown in Table S1. At each site, PM2.5 samples were collected 80 

onto pre-combusted Whatman quartz-fiber filters (20 cm × 25 cm) using a high-volume 81 

sampler and a flow rate of 1 m3 min−1. Two intensive sampling campaigns were 82 

performed at each sampling site, with consecutive 24 h samples collected for 1 week in 83 

January 2018 (winter) and July 2018 (summer). A single sample representing the winter 84 

or summer at a sampling site was prepared by combining a one-tenth portion of each 85 

filter collected in a sampling campaign at the site. A total of 20 pooled samples were 86 

prepared and used in the subsequent experiments. One field blank sample for each site 87 

was collected and analyzed. The samples were stored at −20 °C until they were analyzed. 88 

2.2 Extracting water-soluble ions, WSOC, and dicarboxylic acids 89 

Each pooled sample was extracted four times. Each extraction involved adding 50 90 

mL of ultrapure water to the sample and ultrasonicating the sample for 30 min. The 91 

extracts were combined and passed through a 0.22 μm polytetrafluoroethylene 92 

membrane filter. Each extract was divided into several portions of different volumes, 93 

and the different portions were analyzed to determine the concentrations and/or carbon 94 

isotope compositions of water-soluble ions, WSOC, and dicarboxylic acids. 95 

The carbon content of the WSOC was determined using a TOC-VCPH total 96 

organic carbon analyzer (Shimadzu, Kyoto, Japan) following the non-purgeable organic 97 

carbon analysis method (Kirillova et al., 2010). Water-soluble inorganic ions (Ca2+, Cl−, 98 

K+, Mg2+, Na+, NH4
+, NO3

−, and SO4
2−) were determined using a Metrohm 761 99 

Compact IC ion chromatograph (Metrohm, Herisau, Switzerland). The WSOC and 100 
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water-soluble inorganic ion concentrations in duplicate samples were determined, and 101 

the concentrations were corrected for the concentrations in the field blanks (Mo et al., 102 

2021).  103 

2.3 Dicarboxylic acid analysis and carbon isotope analysis 104 

The stable carbon isotope δ13C and radiocarbon Δ14C values for dicarboxylic acids 105 

were determined using previously published methods (Xu et al., 2021). Briefly, an 106 

ultrapure water extract of a sample was evaporated to dryness and then derivatized with 107 

10% BF3 in 1-butanol (Sigma-Aldrich, St Louis, MO, USA) at 100 °C for 1 h to convert 108 

carboxyl groups into butyl ester groups. The derivatives were extracted with n-hexane 109 

and quantified by gas chromatography mass spectrometry before isotope analysis was 110 

performed. The δ13C values for individual diacids were determined by gas 111 

chromatography isotope ratio mass spectrometry (Thermo Fisher Scientific Delta V, 112 

Waltham, MA, USA). Each sample was analyzed in triplicate and the analytical errors 113 

for the replicate analyses were generally <0.3‰.  114 

Compound-specific radiocarbon analysis of oxalic acid was achieved by 115 

separating and harvesting single compounds using a preparative capillary gas 116 

chromatograph in sufficient amounts to allow offline natural abundance 14C 117 

measurements to be made by accelerator mass spectrometry. The preparative capillary 118 

gas chromatography isolates were rinsed with dichloromethane, completely dried, and 119 

combusted at 920 °C with CuO and Ag in a quartz tube to give CO2. The CO2 was 120 

purified in a vacuum system and then reduced to graphite using the hydrogen reduction 121 

method. The Δ14C value was determined using the 1.5 SDH-1, 0.5 MV compact 122 

accelerator mass spectrometry facility (NEC, National Electrostatics Corporation, USA) 123 

at the Guangzhou Institute of Geochemistry of the Chinese Academy of Sciences (Zhu 124 

et al., 2015). Each accelerator mass spectrometry analysis 14C result is reported as a 125 

fraction modern (Fm) normalized to a common δ13C values of -25‰. The results were 126 

corrected for background carbon using an isotope dilution method described in previous 127 

publications (Xu et al., 2021). The δ13C and Fm values for individual diacids were 128 
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calculated using the relevant isotope ratios for diacid derivatives and 1-butanol using 129 

an isotope mass balance equation. Each Fm result was converted into a “fraction of 130 

contemporary carbon” (Fc) by normalizing the Fm using a conversion factor of 1.06 to 131 

correct for excess 14C from nuclear bomb tests (Xu et al., 2022). 132 

2.4 Carbon isotope analysis of WSOC 133 

A ~15 mL aliquot of a WSOC extract was cooled to –20 °C and dried in a vacuum 134 

freeze drier. The residue was redissolved in ~200 μL of ultrapure water, then 50 μL was 135 

transferred to a tin capsule for stable carbon isotope analysis and 150 μL was transferred 136 

to a capsule for radiocarbon analysis. The samples in the capsules were evaporated to 137 

dryness at 60 °C before isotope analyses were performed. 138 

The carbon isotopes in the WSOC were determined using a previously published 139 

procedure (Mo et al., 2021). The δ13C value for WSOC was determined using a Flash 140 

2000 elemental analyzer connected to a Delta V ion ratio mass spectrometer (Thermo 141 

Fisher Scientific, Waltham, MA, USA). The Δ14C values for the WSOC samples were 142 

determined at the accelerator mass spectrometry facility (1.5 SDH-1, 0.5 MV, NEC, 143 

USA). Generally, >200 μg of WSOC were combusted and converted into graphite for 144 

each radiocarbon analysis. 145 

3 Results and Discussion 146 

3.1 Spatiotemporal variations in dicarboxylic acids 147 

Dicarboxylic acid, oxocarboxylic acid, and α-dicarbonyl concentrations in the 148 

PM2.5 samples collected in the winter and summer in the five megacities were 149 

determined, and a total of 29 water-soluble organic species were identified, as shown 150 

in Table S2. The diacid and related compound concentrations were slightly higher at 151 

the urban than suburban sites, but the differences were not significant. For each city, 152 

the mean of the concentrations found at the urban and suburban sites is therefore 153 

presented. 154 

The total diacid concentrations in the samples from the five megacities were 25–155 
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1300 ng m−3 (mean ± standard deviation 690 ± 360 ng m−3), which were similar to 156 

concentrations previously found in other Asian megacities such as Chennai (mean 610 157 

ng m−3) (Pavuluri et al., 2010) and Hong Kong (mean 690 ng m−3) (Ho et al., 2006) and 158 

slightly lower than concentrations found in 14 Chinese cities in 2003 (890 ± 460 ng 159 

m−3) (Ho et al., 2007). Oxalic acid was the most abundant diacid at all of the sampling 160 

sites and contributed 70%–89% (mean 82%) of the total diacid concentrations. The 161 

mean oxalic acid to total diacid concentration ratios were significantly higher than the 162 

mean of 58% found for 14 urban sites in China in 2003 (Ho et al., 2007). The increase 163 

in the oxalic acid to total diacid concentration ratio between 2003 and 2018 indicated 164 

that secondary organic aerosol production in China increased between 2003 and 2018 165 

because oxalic acid is an end-product of the oxidation of many precursors (Ervens et 166 

al., 2011; Carlton et al., 2007; Lim et al., 2010; Lim et al., 2013). Malonic acid and 167 

succinic acid were approximately equally the second most abundant diacids, 168 

contributing 4.4% and 4.7%, respectively, of the total diacid concentrations, and 169 

phthalic acid, terephthalic acid, adipic acid, and azelaic acid were the next most 170 

abundant diacids. The mean oxoacid concentration was 54 ± 34 ng m−3, and glyoxylic 171 

acid and pyruvic acid were the most and second most abundant oxoacids, respectively. 172 

Two α-dicarbonyls (important oxalic acid precursors) were also determined (Fu et al., 173 

2008; Warneck, 2003). Methylglyoxal was more abundant than glyoxal, and this was 174 

partly attributed to the rate of oxidation by OH radicals being lower for methylglyoxal 175 

than glyoxal (Meng et al., 2018). 176 

In Beijing (in North China), the diacid concentration was markedly lower in winter 177 

(260 ng m−3) than summer (850 ng m−3) (Fig. 1), probably because weaker solar 178 

radiation and lower temperatures caused less photochemical oxidation to occur in 179 

winter than summer (Ho et al., 2007). In particular, during the winter sampling period, 180 

clean air masses originating in Siberia dominated the atmosphere in Beijing (Fig. S2) 181 

and may have caused the secondary aerosol precursor concentrations to be very low. In 182 

contrast, the winter to summer diacid concentration ratios for the cities in South China 183 
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(Chengdu, Guangzhou, Shanghai, and Wuhan) were >1 (range 1.44.2) (Fig. 1). Unlike 184 

for Beijing, strong photochemical oxidation would have occurred in winter in the cities 185 

in South China (Ho et al., 2007). The diacid concentrations were probably higher in 186 

winter than summer because the mixing heights were lower and precipitation was less 187 

frequent in winter than summer. Oxocarboxylic acids and α-dicarbonyls had similar 188 

spatial and seasonal patterns to diacids, the concentrations being higher in South China 189 

in winter than summer but higher in North China in summer than winter. 190 

 191 

Figure 1. Dicarboxylic acid, oxocarboxylic acid, and α-dicarbonyl concentrations in 192 

PM2.5 collected in five Chinese megacities in (a) winter and (b) summer. Samples were 193 

collected at a suburban site (S) and an urban site (U) in each city. 194 

3.2 Radiocarbon-based oxalic acid source apportionment 195 

We determined the Δ14C values for oxalic acid (the most abundant diacid) in the 196 

samples. The sources of oxalic acid were apportioned based on the Δ14C data, and the 197 

non-fossil contributions to the oxalic acid concentrations (fNF-oxalic acid) were 40%–198 

76% (mean 61% ± 11%), as shown in Table S3. The high proportion of fNF-oxalic acid 199 

demonstrates that even in the heavily populated and industrialized areas of China, non-200 

fossil emissions are important and ubiquitous sources of oxalic acid. The important non-201 

fossil sources of oxalic acid may be seasonally produced biogenic precursors and 202 

precursors emitted during biomass burning. The fNF-oxalic acid values were higher for 203 

the suburban sites than the urban areas except for Shanghai (Table S3). This is 204 

consistent with larger amounts of fossil fuels being consumed in urban areas than 205 
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suburban areas. However, intraurban differences were not marked, so the Δ14C-based 206 

source apportionment results for the different cities were compared.  207 

The mean fNF-oxalic acid value was higher in summer (67% ± 10%) than winter 208 

(54% ± 11%), indicating that more emissions were caused by fossil fuel combustion 209 

and/or less biogenic emissions occurred in winter than summer. In winter, fossil-fuel-210 

derived carbon contributed ~60% of the carbon in oxalic acid in Beijing and Shanghai 211 

(Fig. 2) but <40% of the carbon in oxalic acid in Chengdu, Guangzhou, and Wuhan. 212 

This agreed with the results of a previous study in which the sources of SOA during 213 

winter haze events were apportioned using two complementary bilinear receptor 214 

models and fossil sources were found to contribute 63%, 50%, and 35% of SOAs in 215 

Beijing, Shanghai, and Guangzhou, respectively (Huang et al., 2014). Oxalic acid was 216 

therefore a good surrogate for SOA. 217 

In summer, a mean of 71% ± 4% of the oxalic acid in Chengdu, Guangzhou, 218 

Shanghai, and Wuhan (in South China) was derived from natural biomass (Fig. 2). 219 

However, a large proportion (56% ± 1%) of the oxalic acid in Beijing (in North China) 220 

was derived from fossil carbon (Fig. 2). Biogenic precursors are expected to be more 221 

important in summer than winter, but fossil-fuel-derived carbon contributed most of the 222 

oxalic acid in Beijing in both summer and winter. Back trajectories indicated that the 223 

air masses in Beijing during the summer sampling periods mostly originated over the 224 

Beijing–North China Plain (Fig. S2), which is one of the most polluted parts of China 225 

(Andersson et al., 2015; Zhao et al., 2021).  226 
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 227 

Figure 2. Mass concentrations of oxalic acid derived from non-fossil sources (NF) and 228 

fossil fuel (FF) and the proportions of non-fossil oxalic acid found for Beijing (BJ), 229 

Guangzhou (GZ), Wuhan (WH), Chengdu (CD), and Shanghai (SH) in winter and 230 

summer. 231 

The concentrations of oxalic acid derived from non-fossil sources and fossil fuel 232 

were 190–660 ng m−3 (mean 370 ± 150 ng m−3) and 81–520 ng m−3 (mean 260 ± 150 233 

ng m−3), respectively (Fig. 2). In winter, the concentrations of oxalic acid derived from 234 

fossil fuel were higher in cities in South China than in Beijing. The concentrations of 235 

oxalic acid derived from fossil fuel were markedly lower in summer than winter in the 236 

cities in South China but higher in summer than winter in Beijing. In summer, the 237 

concentrations of oxalic acid derived from fossil fuel were threefive times higher in 238 

Beijing than in the cities in South China (Fig. 2). This would have been caused by 239 

seasonally dependent fossil fuel consumption and meteorological conditions, as 240 

discussed above. 241 

Oxalic acid derived from non-fossil sources made substantial contributions to or 242 

even dominated the oxalic acid in the cities we studied (Fig. 2). The concentrations of 243 

non-fossil oxalic acid in the cities in South China were higher in winter than summer. 244 

However, biogenic compounds (e.g., isoprene (Bikkina et al., 2014; Bikkina et al., 2021) 245 

and monoterpene (Link et al., 2021)) may contribute a smaller proportion of non-fossil 246 

oxalic acid in winter than summer. The high non-fossil oxalic acid concentrations found 247 
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in winter may therefore have been caused by local and regional biomass burning. As 248 

shown in Fig. 3a, the non-fossil oxalic acid concentrations positively correlated with 249 

the concentration of non-sea-salt potassium (nss-K+; a marker for biomass burning) 250 

(r2=0.81, p<0.001), indicating that the high non-fossil oxalic acid concentrations were 251 

mainly caused by emissions of precursors through biomass burning. The slope of the 252 

regression line fitted to a plot of the non-fossil oxalic acid concentration against the 253 

nss-K+ concentration (0.49 ± 0.06; Fig. 3a) was similar to the slope found in a previous 254 

study performed in the Pearl River Delta area in South China (0.55 ± 0.08) (Xu et al., 255 

2022). When the biomass burning contribution was very low (nss-K+=0 µg m−3), the 256 

mean non-fossil oxalic acid concentration (190 ng m−3; Fig. 3a) was half of the mean 257 

total oxalic acid concentration (370 ng m−3). This suggested that biogenic emissions 258 

and biomass burning contributed equally to the mean total oxalic acid concentration. 259 

Non-fossil oxalic acid and nss-K+ were less abundant in all of the cities in summer 260 

than winter (Fig. 3a), indicating that most of the non-fossil oxalic acid was produced 261 

through biogenic emissions in summer. On average, the non-fossil oxalic acid 262 

concentrations in Guangzhou, Wuhan, and Chengdu were 1.3, 2.5, and 3.2 times higher, 263 

respectively, in winter than summer (Fig. 3a), mostly because more biomass burning 264 

occurs in winter than summer. Less marked seasonal variations in non-fossil oxalic acid 265 

concentrations were found for Beijing and Shanghai (Fig. 3a), indicating that biomass 266 

burning may produce only a small proportion of the oxalic acid found in these cities. 267 

This is consistent with emission control legislation being stricter in Beijing and 268 

Shanghai than the other cities, meaning biomass burning activities (e.g., crop residue 269 

burning) are effectively controlled in Beijing and Shanghai (Qiu et al., 2016). The 270 

oxalic acid sources apportioned using the Δ14C data suggested that decreasing the 271 

concentrations of precursors derived from fossil fuels could be important for controlling 272 

SOA production in Beijing and Shanghai. In contrast, decreasing the concentrations of 273 

precursors derived from both fossil fuels and biomass combustion will be required to 274 

decrease the SOA concentrations in areas such as Chengdu, Guangzhou, and Wuhan.  275 
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 276 

Figure 3. Relationships between (a) non-fossil-derived oxalic acid concentrations and 277 

non-sea-salt potassium (nss-K+) concentrations and between (b) non-fossil-derived 278 

water-soluble organic carbon (WSOC) concentrations and nss-K+ concentrations. 279 

3.3 Relationships between stable carbon isotope shifts and atmospheric processing 280 

The stable carbon isotope composition (δ13C) provides useful information about 281 

the sources of carbon and particularly about atmospheric processes affecting organic 282 

compounds. Primary emissions from various sources have different δ13C values. The 283 

δ13C value will change because of kinetic isotope effects during atmospheric processes 284 
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(Kirillova et al., 2013) such as oxidation, secondary formation, oligomerization, and 285 

gas–particle partitioning (Bikkina et al., 2017b) in which lighter and heavier isotopes 286 

behave differently, although source mixing can also affect the δ13C value. The δ13C 287 

values of diacids therefore have been used widely to track atmospheric processes and 288 

assess the degree of organic aerosol aging (Aggarwal and Kawamura, 2008; Zhang et 289 

al., 2016; Wang et al., 2020; Shen et al., 2022; Qi et al., 2022). 290 

The δ13C values for the main diacids and oxoacids in the five cities that were 291 

studied are shown in Fig. 4 and Table S4. Oxalic acid had a markedly lower δ13C (by 292 

4.4‰) in winter than summer (Fig. 4). This would have been caused by differences in 293 

isotope fractionation caused by atmospheric processes in winter and summer, 294 

differences in oxalic acid sources in winter and summer, or a combination. The δ13C 295 

values for the diacids with more carbon atoms (C3–C9 diacids) in winter and summer 296 

were not very (<1.5‰) different (Fig. 4), so differences in emission sources were not 297 

likely to be responsible for the marked seasonal differences in oxalic acid δ13C values. 298 

The nss-SO4
2− to SO4

2− ratio (97% ± 3%) and nss-K+ to K+ ratio (94% ± 4%) indicated 299 

that marine emissions with heavier δ13C signatures did not make marked contributions 300 

(Dasari et al., 2019) (Fig. S3), particularly in the coastal cities Guangzhou and Shanghai. 301 

The seasonal differences in the δ13C values could have been stronger for oxalic acid 302 

than diacids with more carbon atoms because processes involving isotope fractionation 303 

affected diacids with fewer carbon atoms more than diacids with more carbon atoms. 304 

The short-chain acid glyoxylic acid is an important precursor of oxalic acid (Bikkina et 305 

al., 2017a; Carlton et al., 2007; Lim et al., 2013) that also had markedly different δ13C 306 

values (by 4.7‰) in winter and summer (Fig. 4). The clear seasonal differences in the 307 

δ13C values for oxalic acid and glyoxylic acid suggested that atmospheric processes 308 

markedly affected oxalic acid and glyoxylic acid, which are small molecules.  309 
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 310 

Figure 4. Box-and-whisker plot of the δ13C values for four saturated aliphatic 311 

dicarboxylic acids (C2, C3, C4, and C9), phthalic acid (Ph), and glyoxylic acid (ωC2) in 312 

PM2.5 collected in five Chinese megacities in January 2018 (winter) and July 2018 313 

(summer). Each box indicates the median (the line within the box), the mean (the solid 314 

dot within the box), the interquartile range (the ends of the box), and the 10th and 90th 315 

percentiles (the whiskers).  316 

Oxalic acid can be emitted from primary sources, but most oxalic acid in 317 

atmospheric aerosol is formed through aqueous-phase reactions and/or photochemical 318 

aging, i.e., secondary sources (Huang and Yu, 2007; Van Pinxteren et al., 2014; Xu et 319 

al., 2022). During aqueous-phase reactions, water-soluble gas-phase precursors with 320 

lower 13C contents will react faster than the same precursors with higher 13C contents, 321 

and this will cause the δ13C values to be lower for the particulate products than the 322 

gaseous reactants (Anderson et al., 2004; Fisseha et al., 2009; Irei et al., 2006). In 323 

contrast, photochemical aging processes can give gaseous products (e.g., CO2, CO, and 324 

volatile organic compounds) which will be enriched in lighter isotopes, causing δ13C to 325 

be higher for the residual (aged) aerosols than the gaseous oxidation products 326 

(Aggarwal and Kawamura, 2008; Pavuluri and Kawamura, 2012).  327 

It has been found in several previous studies that aqueous-phase processes play 328 

important roles in SOA formation in China in winter (Gkatzelis et al., 2021; Lv et al., 329 

2022; Yu et al., 2021; Wang et al., 2021). This was largely caused by the grows of 330 
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aerosol liquid water content (ALWC), because the hygroscopic particles were abundant 331 

in winter (Yu et al., 2021; Wang et al., 2020; Chen et al., 2021). Ammonium, nitrate, 332 

and sulfate are the most important hygroscopic particles in areas with intense 333 

anthropogenic emissions (Wu et al., 2018; Lv et al., 2022). As shown in Table S5, the 334 

nitrate concentrations were nine times higher in winter than summer and the ammonium 335 

concentrations were 2.5 times higher in winter than summer. The inorganic aerosol 336 

(Ca2+, Cl−, K+, Mg2+, Na+, NH4
+, NO3

−, and SO4
2−) contents and meteorological 337 

parameters (temperature and relative humidity) were used in the ISORROPIA-II 338 

thermodynamic model (Xu et al., 2022) and the results indicated that the ALWCs in all 339 

five cities were markedly higher in winter (60 ± 76 µg m−3) than summer (8.5 ± 5.1 µg 340 

m−3) (Table S5).  The increase in ALWC in winter may facilitate the partitioning of 341 

water-soluble organic precursors to the aqueous phase of the aerosol and promote the 342 

subsequent formation of low volatile compounds such as oxalic acid in the aqueous 343 

phase. Meanwhile, aerosols will be less aged in winter than summer because the 344 

temperature is lower and less solar radiation is present in winter than summer. 345 

Assuming that source mixing made a minor contribution, the atmospheric processes 346 

aging and aqueous SOA formation would have strongly contributed to seasonal 347 

variations in the δ13C values for oxalic acid in the five Chinese megacities that were 348 

studied. 349 

3.4 Tracing sources and aerosol processing using the δ13C and Δ14C values 350 

Aerosol sources and atmospheric processes affecting aerosols were investigated 351 

using the δ13C and Δ14C values for oxalic acid, as shown in Fig. 5a. As shown in Fig. 352 

5a, the δ13C value was higher and the Δ14C value indicated more biogenic oxalic acid 353 

was present in summer than winter. The oxalic acid data for Chengdu, Guangzhou, and 354 

Wuhan strongly overlap in the plot, suggesting that oxalic acid in these cities had similar 355 

sources and had been subjected to similar processes. In contrast, the δ13C and Δ14C 356 

values for oxalic acid in Beijing and Shanghai are spread over a large area in the plot, 357 

indicating that oxalic acid in these cities had various sources and had been subjected to 358 
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various atmospheric processes. The fossil-carbon contributions to oxalic acid were 359 

markedly higher in Beijing and Shanghai than the other cities, as described above. 360 

However, the δ13C values were lower in Beijing and higher in Shanghai. The δ13C 361 

values suggested that organic aerosols in Beijing were predominantly fresh SOAs but 362 

that organic aerosols were more affected by photochemical aging in Shanghai than the 363 

other cities. 364 

 365 
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Figure 5. 14C-based non-fossil source fractions plotted against the δ13C values for 366 

molecules and carbonaceous aerosol components. (a) Aerosol oxalic acid collected in 367 

Beijing (blue), Guangzhou (red), Wuhan (brown), Chengdu (green), and Shanghai 368 

(orange) in summer (open squares) and winter (filled squares). The mean dual carbon 369 

isotope signals for water-soluble organic carbon (WSOC) in the five cities in summer 370 

(gray open triangles) and winter (gray filled triangles) are also shown (Fig. S4). Each 371 

error bar indicates the standard deviation. (b) Annual mean values for black carbon (BC, 372 

gray triangles), organic carbon (OC, blue diamonds), WSOC (red squares), and oxalic 373 

acid (C2, brown and green circles) in the five cities (see Table 1 for detailed data and 374 

references). Each error bar indicates the standard deviation. Here POA and SOA refer 375 

to primary organic aerosol and secondary organic aerosol, respectively. The expected 376 

dual carbon signatures for coal, liquid fossil carbon, and C3 plants were taken from 377 

previous publications (Widory et al., 2004; Huang et al., 2006; Kawashima and 378 

Haneishi, 2012; Smith and Epstein, 1971; Martinelli et al., 2002; Cao et al., 2011). 379 

The mean dual carbon isotope signals for WSOC pool in the five cities were 380 

determined and are shown as gray triangles in Fig. 5a for comparison with the signals 381 

for oxalic acid. The aging process is more important in summer than winter, but the 382 

mean δ13C values for WSOC in summer (−24.8‰ ± 0.9‰) and winter (−24.1‰ ± 0.4‰) 383 

were not markedly different (Fig. S4). The Δ14C data for WSOC indicated that the mean 384 

non-fossil-carbon contribution to WSOC was 62% ± 10% (range 45%80%; Fig. S4), 385 

which was similar to the contribution in 10 Chinese cities in 2013 (mean 60% ± 9%, 386 

range 38%81%) (Mo et al., 2021). The WSOC concentration was almost twice as high 387 

in winter than summer, but the WSOC source patterns in winter and summer were 388 

similar (Fig. 5a). As shown in Fig. 3b, the non-fossil WSOC concentration significantly 389 

correlated with the biomass burning marker (nss-K+) concentration (r2=0.84, p<0.001). 390 

When the biomass burning contribution was very low (nss-K+≈0 µg m−3), the non-fossil 391 

WSOC concentration was close to 0 µg m−3 (Fig. 3b). Unlike oxalic acid, for which 392 

biogenic emissions and biomass burning were equally important sources, most of the 393 
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non-fossil WSOC was associated with biomass burning. The similar WSOC source 394 

patterns in winter and summer were therefore probably caused by fossil fuel 395 

combustion and biomass-burning emissions having similar seasonal variations.  396 

Oxalic acid contributed a mean of 5.5% (range 1.4%10.7%) of the WSOC 397 

concentration and was probably the most abundant compound (Myriokefalitakis et al., 398 

2011). However, the carbon isotope compositions of oxalic acid and WSOC changed in 399 

opposite ways between winter and summer (Fig. 6). This suggested that oxalic acid 400 

could have different carbon sources and be affected by different atmospheric processes 401 

with the bulk WSOC. The δ13C value was higher for oxalic acid than WSOC in summer 402 

(Fig. 5a and Fig. 6a), when aerosols are affected by strong photochemical aging 403 

processes. It has previously been found that more polar WSOC components are 404 

enriched in 13C compared with the total organic carbon in aerosols during 405 

photochemical aging (Kirillova et al., 2013; Kirillova et al., 2014a). The larger 406 

differences between the δ13C values for WSOC and total organic carbon were observed 407 

in aerosols which have transported longer distances/times and thereby being more aged 408 

during transport. (Kirillova et al., 2014b; Bosch et al., 2014). The δ13C value has been 409 

found to increase as the number of carbon atoms in diacids decreases (Aggarwal and 410 

Kawamura, 2008; Pavuluri et al., 2011), suggesting that shorter-chain diacids, which 411 

can form through photochemical aging of longer-chain diacids, will become enriched 412 

in 13C during aging. Enrichment of 13C in oxalic acid relative to WSOC (Fig. 6a) 413 

therefore probably reflected photochemical aging affecting oxalic acid more than 414 

WSOC in summer. The Δ14C values indicated more oxalic acid than WSOC was formed 415 

from non-fossil carbon in summer (Fig. 6a). This could have been because fossil-carbon 416 

components are more recalcitrant than biomass and biogenic components of organic 417 

aerosols to oxidative aging (Elmquist et al., 2006; Kirillova et al., 2014b; Kirillova et 418 

al., 2014a), meaning aged oxalic acid (with a higher δ13C value) will preferentially form 419 

from non-fossil carbon (with a higher Δ14C value). As discussed above, biogenic 420 

emissions made larger contributions of oxalic acid than WSOC in summer, which gave 421 
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the same results. 422 

In contrast, the δ13C values were lower and the Δ14C values indicated more oxalic 423 

acid than WSOC was formed from fossil carbon in winter (Fig. 5a and Fig. 6b). The 424 

lower δ13C values for oxalic acid found in winter suggested that oxalic acid was 425 

predominantly formed through secondary reactions of gaseous precursors rather than 426 

through photochemical aging of aerosols. WSOC aerosols are mixtures of primary 427 

organic aerosols (e.g., sugars) and SOAs. Only a small fraction of water-soluble 428 

primary organic aerosols would have had fossil fuel sources (Liu et al., 2014; Mo et al., 429 

2021). Therefore, a higher fossil-carbon contribution to water-soluble SOA than WSOC 430 

aerosol was expected, and this was indicated by the Δ14C values for oxalic acid 431 

indicating important fossil-carbon sources. It has been suggested that substantial fossil-432 

carbon-derived precursors are probably oxidized to give water-soluble SOAs through 433 

aqueous-phase chemical processes, giving products such as oxalic acid with lower δ13C 434 

values and higher fossil-carbon contributions (Xu et al., 2022). Aqueous-phase 435 

processes are facilitated by a high ALWC, which is higher in winter than summer 436 

because the hygroscopic particle (e.g., ammonia and nitrate) mass is higher in winter 437 

than summer (Lv et al., 2022; Xu et al., 2022) and meteorological conditions (e.g., the 438 

boundary layer height, temperature, and wind speed) are unfavorable in winter 439 

(Gkatzelis et al., 2021). Photochemical aging is suppressed in winter because of lower 440 

temperatures and weaker solar radiation than in summer. This means that more 441 

aqueous-phase production of fresh SOA than aerosol photochemical aging will occur 442 

in urban areas in China in winter.  443 
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 444 

Figure 6. Proportions of non-fossil sources (determined from the 14C values) and δ13C 445 

values for water-soluble organic carbon (WSOC) and oxalic acid (C2) in Beijing, 446 

Guangzhou, Wuhan, Chengdu, and Shanghai in (a) summer and (b) winter. 447 

3.5. Comparison with carbonaceous aerosol components 448 

The δ13C and Δ14C values for oxalic acid were compared with the mean annual 449 

isotope compositions of the bulk carbonaceous aerosols (i.e., BC, OC, and WSOC) in 450 

PM2.5 found in the five study areas in previous studies (Fig. 5b and Table 1). Non-fossil-451 

source-derived carbon was the dominant contributor of OC and WSOC aerosols, the 452 

mean annual contributions being 57% ± 5% and 62% ± 6%, respectively (Fig. 5b). The 453 

large contribution of non-fossil carbon to OC and WSOC (a sub-fraction of OC) 454 

contrasted strongly with the large contribution of fossil carbon (72% ± 7%) to BC (Fig. 455 

5b). This was probably because OC aerosols are more affected than BC by biogenic 456 

emissions and biomass burning.  457 

The δ13C values were higher and the Δ14C values indicated smaller contributions 458 

of fossil carbon for WSOC than OC in both winter and summer (Fig. 5b). Similar results 459 
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have been found at other locations and for different aerosol sizes (Kirillova et al., 2013; 460 

Kirillova et al., 2014a; Kirillova et al., 2014b; Bosch et al., 2014), and this was 461 

explained by atmospheric aging affecting water-soluble organic aerosols more than 462 

organic aerosols. SOA formation typically causes δ13C to decrease, so fresh secondary 463 

production of WSOC from fossil carbon would be less likely. However, the sources and 464 

processes affecting the different aerosol components were masked in the mean isotope 465 

contents of the aerosol mixtures. Oxalic acid is one of the most abundant compounds 466 

in WSOC aerosols. The δ13C values were lower for the oxalic acid than the WSOC and 467 

the Δ14C values indicated that fossil carbon made larger contributions to the oxalic acid 468 

than the WSOC aerosol in winter (Fig. 5b). This indicated that water-soluble SOA was 469 

predominantly produced from fossil-fuel-derived carbon in the study areas in winter. 470 

The marked differences between the different organic aerosol components indicated 471 

that dual-carbon-isotope studies of more aerosol molecules and components should be 472 

performed to improve our understanding of the origins and evolution of organic 473 

aerosols in the atmosphere.  474 

Table 1. Compilation of literature values of δ13C compositions and 14C-based non-fossil 475 

source fraction (fNF) for black carbon (BC), organic carbon (OC), water-soluble organic 476 

carbon (WSOC), and oxalic acid in PM2.5 samples collected from Beijing, Shanghai, 477 

Guangzhou, Chengdu, and Wuhan. 478 

Components Location Season δ13C (‰) fNF (%) References 

BC 

Beijing Annual NAa 21 (Zhang et al., 2015) 
Beijing Annual NA 18 (Zhang et al., 2017) 
Beijing Annual -24.6 24 (Fang et al., 2018) 
Beijing Summer/winter -25.8 NA (Cao et al., 2011) 

Shanghai Summer/winter -25.9 NA (Cao et al., 2011) 
Shanghai Annual -25.6 30 (Fang et al., 2018) 

Guangzhou Summer/winter -25.9 NA (Cao et al., 2011) 
Guangzhou Annual -25.3 25 (Fang et al., 2018) 
Chengdu Annual -26.1 41 (Fang et al., 2018) 
Wuhan Summer/winter -25.4 NA (Cao et al., 2011) 
Wuhan Winter NA 26 (Liu et al., 2016b) 
Average  -25.6±0.3 28±7  

OC 
Beijing Summer/winter -26.0 NA (Cao et al., 2011) 
Beijing Annual NA 52 (Zhang et al., 2017) 
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Beijing Annual NA 50 (Liu et al., 2020) 
Shanghai Summer/winter -25.8 NA (Cao et al., 2011) 
Shanghai Winter NA 51 (Huang et al., 2014) 
Shanghai Annual NA 53 (Liu et al., 2020) 

Guangzhou Summer/winter -26 NA (Cao et al., 2011) 
Guangzhou Annual NA 55 (Liu et al., 2020) 
Guangzhou Spring NA 54 (Liu et al., 2016a) 
Chengdu autumn NA 73 (Liu et al., 2017) 
Wuhan Summer/winter -25.6 NA (Cao et al., 2011) 
Wuhan Winter NA 62 (Liu et al., 2016b) 
Wuhan Autumn NA 66 (Liu et al., 2017) 
Average  -25.9±0.3 57±5  

WSOC 

Beijing Summer/winter -24.4 55 This work 
Shanghai Summer/winter -23.6 53 This work 

Guangzhou Summer/winter -24.8 63 This work 
Chengdu Summer/winter -24.7 72 This work 
Wuhan Summer/winter -23.6 65 This work 
Beijing Annual -23.7 56 (Mo et al., 2021) 

Shanghai Annual -24 58 (Mo et al., 2021) 
Guangzhou Annual -24.7 59 (Mo et al., 2021) 
Chengdu Annual -24.9 69 (Mo et al., 2021) 
Wuhan Annual -24.3 67 (Mo et al., 2021) 
Average  -24.4±0.5 62±6  

Oxalic acid 

Beijing Summer -22.8 50.5 This work 
Shanghai Summer -16.3 68.8 This work 

Guangzhou Summer -23 74.2 This work 
Chengdu Summer -24.3 67.1 This work 
Wuhan Summer -22.4 73.1 This work 
Beijing Winter -25.8 44.1 This work 

Shanghai Winter -24.2 40.6 This work 
Guangzhou Winter -27.1 63.7 This work 
Chengdu Winter -26.7 61.2 This work 
Wuhan Winter -27.1 62.1 This work 
Average Summer -21.8±3.1 67±10  
Average Winter -26.2±1.2 54±11  

a NA: no data 479 

4 Conclusions 480 

The Δ14C and δ13C values of oxalic acid in five megacities in China gave valuable 481 

information about the sources of carbon in SOAs and atmospheric processes affecting 482 

SOAs. The method allowed the fates of SOA in the atmosphere in urban areas to be 483 

investigated even though SOAs are very complex. The SOA sources apportioned from 484 

the 14C values indicated marked seasonal variations, non-fossil carbon being dominant 485 
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in summer and fossil carbon and non-fossil carbon making similar contributions in 486 

winter. Precursors containing fossil carbon emitted through coal combustion or by 487 

vehicles were mostly responsible for SOA formation in Beijing and Shanghai. SOA 488 

formation was mainly associated with precursors containing non-fossil carbon emitted 489 

through biomass burning and/or biogenic emissions in Chengdu, Guangzhou, and 490 

Wuhan.  491 

 492 

Figure 7. Schematic of the atmospheric fates of secondary organic aerosols (SOAs) in 493 

winter and summer. VOCs means volatile organic compounds, SVOCs means semi-494 

volatile organic compounds, and WSOC means water-soluble organic carbon. 495 

The dual-carbon-isotope datasets for the individual SOA molecules and bulk 496 

organic aerosols indicated that there were two opposite seasonal organic aerosol 497 

evolution processes. The fates of SOAs in the atmosphere in winter and summer are 498 

shown in Fig. 7. In winter, the high hygroscopic particle mass and unfavorable 499 

meteorological conditions (low temperature and high humidity) increase aerosol liquid 500 

water formation, which causes fossil-derived water-soluble gaseous organic precursors 501 

to dissolve in the aerosol liquid water and aqueous SOA to form (Fig. 7). Oxalic acid 502 

indicates freshly formed aqueous SOA in winter because the δ13C values were lower 503 

for oxalic acid than WSOC and the contribution of fossil carbon was higher for oxalic 504 
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acid than WSOC. In summer, organic aerosols are more affected by photochemical 505 

aging than fresh SOA formation because of the high temperature and the high amount 506 

of solar radiation present (Fig. 7). Oxalic acid was affected by SOA aging in summer 507 

and the δ13C and Δ14C values were higher for oxalic acid than WSOC. 508 

Overall, we found that the carbon sources and SOA evolution processes were 509 

markedly different in different cities and seasons. There is a need to include the large 510 

spatial and seasonal variations in SOA fates (including precursor sources, SOA 511 

formation through gas-phase oxidation and from aqueous-phase chemicals, and SOA 512 

aging) in climate projection models and air quality management in China. 513 
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